前言
为什么需要化简三角函数式?
一、什么是三角函数式的化简?
二、三角函数式的化简标准是什么?
三、三角函数式化简可能用到的变形:
弦切互化,1的代换,通分约分,配方展开,提取公因式,公式的逆用,变用,
四、典例剖析:
例1化简:\(\sqrt{1-2sin(\pi+2)cos(\pi+2)}\)
分析:\(\sqrt{1-2sin(\pi+2)cos(\pi+2)}=\sqrt{1-2sin2cos2}\)
\(=\sqrt{(sin2-cos2)^2}=|sin2-cos2|=sin2-cos2\)
备注:\(2rad=2\times 57.3^{\circ},sin2>0,cos2<0,\).
例2已知\(x\)为第三象限的角,化简:\(\sqrt{(1-tanx)^2+(1+tanx)^2}\)
分析:\(\sqrt{(1-tanx)^2+(1+tanx)^2}=\sqrt{2+2tan^2x}=\sqrt{2}\cdot\sqrt{1+tan^2x}\)
\(=\sqrt{2}\cdot\sqrt{1+\cfrac{sin^2x}{cos^2x}}=\sqrt{2}\cdot\sqrt{\cfrac{cos^2x+sin^2x}{cos^2x}}\)
\(=\sqrt{2}\cdot\sqrt{\cfrac{1}{cos^2x}}=\sqrt{2}\cfrac{1}{|cosx|}=-\cfrac{\sqrt{2}}{cosx}\)
例3化简:\(\sqrt{(1-sin\alpha sin\beta)^2-cos^2\alpha cos^2\beta}\),其中\(-\cfrac{\pi}{2}<\alpha<\beta<\cfrac{\pi}{2}\)
分析:\(\sqrt{(1-sin\alpha sin\beta)^2-cos^2\alpha cos^2\beta}\)
\(=\sqrt{(1-sin\alpha sin\beta-cos\alpha cos\beta)(1-sin\alpha sin\beta+cos\alpha cos\beta)}\)
\(=\sqrt{(1-cos(\alpha-\beta))(1+cos(\alpha+\beta)}\)
\(=\sqrt{2sin^2\cfrac{\alpha-\beta}{2}\cdot 2cos^2\cfrac{\alpha+\beta}{2}}\)
\(=|2sin\cfrac{\alpha-\beta}{2}cos\cfrac{\alpha+\beta}{2}|\)
由于\(-\cfrac{\pi}{2}<\alpha<\beta<\cfrac{\pi}{2}\),可以得到\(-\pi<\alpha+\beta<\pi\),
即\(-\cfrac{\pi}{2}<\cfrac{\alpha+\beta}{2}<\cfrac{\pi}{2}\),
故\(cos\cfrac{\alpha+\beta}{2}>0\);
同时能得到\(-\pi<\alpha-\beta<\pi\),且\(\alpha-\beta<0\),故\(-\pi<\alpha-\beta<0\),
则\(-\cfrac{\pi}{2}<\cfrac{\alpha-\beta}{2}<0\),故\(sin\cfrac{\alpha-\beta}{2}<0\)
故原式\(=-2sin\cfrac{\alpha-\beta}{2}cos\cfrac{\alpha+\beta}{2}\)
例4化简\(\cfrac{(1+sin\theta+cos\theta)(sin\cfrac{\theta}{2}-cos\cfrac{\theta}{2})}{\sqrt{2+2cos\theta}}\),其中\(0<\theta<\pi\),
分析:原式\(=\cfrac{[(1+cos\theta)+sin\theta](sin\cfrac{\theta}{2}-cos\cfrac{\theta}{2})}{\sqrt{2(1+cos\theta)}}\)
\(=\cfrac{(2cos^2\cfrac{\theta}{2}+2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2})(sin\cfrac{\theta}{2}-cos\cfrac{\theta}{2})}{\sqrt{2\cdot 2cos^2\cfrac{\theta}{2}}}\)
\(=\cfrac{2cos\cfrac{\theta}{2}(cos\cfrac{\theta}{2}+sin\cfrac{\theta}{2})(sin\cfrac{\theta}{2}-cos\cfrac{\theta}{2})}{2cos\cfrac{\theta}{2}}\)
\(=sin^2\cfrac{\theta}{2}-cos^2\cfrac{\theta}{2}=-cos\theta\)。
例5化简\((\cfrac{1}{tan\frac{\theta}{2}}-tan\cfrac{\theta}{2})\cdot (1+tan\theta\cdot tan\cfrac{\theta}{2})\)
分析:原式\(=(\cfrac{cos\frac{\theta}{2}}{sin\frac{\theta}{2}}-\cfrac{sin\frac{\theta}{2}}{cos\frac{\theta}{2}})\cdot (1+tan\theta\cdot tan\cfrac{\theta}{2})\)
\(=\cfrac{2cos\theta}{sin\theta}\cdot (1+tan\theta\cdot tan\cfrac{\theta}{2})\)
\(=\cfrac{2cos\theta}{sin\theta}+2\cdot tan\cfrac{\theta}{2}\)
\(=\cfrac{2cos\theta}{sin\theta}+\cfrac{2\cdot sin\frac{\theta}{2}\cdot\sin\frac{\theta}{2}\cdot 2}{ cos\frac{\theta}{2}\cdot sin\frac{\theta}{2}\cdot 2}\)
\(=\cfrac{2cos\theta}{sin\theta}+\cfrac{2(1-cos\theta)}{sin\theta}\)
\(=\cfrac{2}{sin\theta}\)
例6化简\((tan\alpha+\cfrac{1}{tan\alpha})\cdot \cfrac{1}{2}sin2\alpha-2cos^2\alpha\)
分析:切化弦,
原式\(=(\cfrac{sin\alpha}{cos\alpha}+\cfrac{cos\alpha}{sin\alpha})\cdot sin\alpha cos\alpha-2cos^2\alpha\)
\(=\cfrac{1}{sin\alpha cos\alpha}\cdot sin\alpha cos\alpha-2cos^2\alpha\)
\(=1-2cos^2\alpha\)
\(=-cos2\alpha\)
例7化简:\(\sqrt{2+2cos8}+2\sqrt{1-sin8}\)
分析:如果你能注意到\(8=2\times 4\),则可能想到利用二倍角公式,想办法将被开方数凑成一个完全平方数的形式,
原式\(=\sqrt{2}\sqrt{1+cos8}+2\sqrt{1-sin8}\)
\(=\sqrt{2}\sqrt{2cos^24}+2\sqrt{sin^24+cos^24-2sin4\cdot cos4}\)
\(=2|cos4|+2\sqrt{(sin4-cos4)^2}\)
\(=2|cos4|+2|sin4-cos4|\)
\(=-2cos4-2(sin4-cos4)=-2sin4\)
反思总结:\(4rad\approx 229^{\circ}\),终边在第三象限的后半段,此时\(cos4>sin4\)。